ydzf.net
当前位置:首页 >> 兔子数列通项公式 >>

兔子数列通项公式

公式如下:一、递归公式: a1=1; a2=1; a(n)=a(n-1)+a(n-2)(n>=3) 二、通项公式: a(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n} 三、证明过程:(方法:数学归纳)1.当n=1时,a1=1,例题成立;2.设当n=k时,命题成立,即: a(k)=(1/√5)*{[(1+

中世纪意大利数学家斐波那契的传世之作《算术之法》中提出了一个饶有趣味的问题:假定一对刚出生的兔子一个月就能长成大兔子,再过一个月就开始生下一对小兔子,并且以后每个月都生一对小兔子.设所生一对兔子均为一雄一雌,且均无死亡.问一对刚出生的小兔一年内可以繁殖成多少对兔子 结论:兔子繁殖问题可以从杨辉三角得到答案 1,1,2,3,5,8,13,21,34,此数列{an}满足, a1=1,a2=1,且an=an-1+an-2 (n≥3) 这就是著名的 斐波那契数列. ^_^

[(1+√5)/2]^n /√5 - [(1-√5)/2]^n /√5

斐波那契数列通项公式 f(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n} 通项公式的推导方法一:利用特征方程 线性递推数列的特征方程为: x^2=x+1 解得 x1=(1+√5)/2, x2=(1-√5)/2. 则f(n)=c1*x1^n + c2*x2^n ∵f(1)=f(2)=1 ∴c1*x1 + c2*x2 c1*x1^2 + c2*

斐波那契数列的通项公式 斐波那契数列的通项比是黄金分割比:Xn=Fn+1/Fn=(Fn+Fn-1)/Fn=1+ Fn-1/Fn=1+1/Xn-1; 即有Xn=1+1/Xn-1;求极限,x=1+1/x; 解得x=(1+sqr(5))/2 而Fn/Fn+1=1/x=(sqr(5)-1)/2 这里用了极限的方法斐波那契数列的通项公式 Fn=[(1+√5)/2]^n /√5 - [(1-√5)/2]^n /√5 用无理数表示有理数!扩展资料 例如:解答过程 参考资料来源:搜狗百科-fibonacci斐波那契数列

斐波那契数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式: 显然这是一个线性递推数列. (如上,又称为“比内公式”,是用无理数表示有理数的一个范例.)注:此时 方

这个数列是由13世纪意大利斐波那契提出的的,故叫斐波那契数列.该数列由下面的递推关系决定:F0=0,F1=1 Fn+2=Fn + Fn+1(n>=0) 它的通项公式是 Fn=1/根号5{[(1+根号5)/2]的n次方-[(1-根号5)/2]的n次方}(n属于正整数)补

即斐波那契数列,“斐波那契数列”的发明者,是意大利数学家列昂纳多斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年.籍贯大概是比萨).他被人称作“比萨的列昂纳多”.1202年,他撰写了《珠算原理》(Liber Abaci

斐波那契数列:1、1、2、3、5、8、13、21、…… 如果设F(n)为该数列的第n项(n∈N+).那么这句话可以写成如下形式: F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3) 显然这是一个线性递推数列. 通项公式的推导方法一:利用特征方程

兔子数列通常是指以下数列: 1、1、2、3、5、8、13、21、…… 一对小兔到第二个月长成大免子,第三个月生下一对小免子.每对小兔子到第二个月都长成大兔子,并且到第三个月也生下一对小兔子.假设这些兔子没有死亡,而且总能繁衍后代.那么,逐月的兔子对数就构成了以上数列.

网站首页 | 网站地图
All rights reserved Powered by www.ydzf.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com